EPIC: Efficient Packing for Inference using Cheetah

Sarabjeet Singh
sarab@cs.utah.edu

Abstract—Emerging cryptographic techniques, like Homomor-
phic Encryption, enable computation while preserving data
privacy. However, their complexity restricts their adoption. In
this work, we characterize a state-of-the-art work for private
CNN inference, Cheetah [2], and identify its memory bottleneck.
We then propose a packing technique to improve weight reuse,
resulting in 10x energy saving while reducing latency by 54 %.

I. INTRODUCTION

Machine Learning’s strength comes from working with large
sets of data, which raises privacy concerns. Cryptographic
techniques, like Homomorphic Encryption (HE), offer func-
tionality of performing computations over encrypted data, but
comes at a higher complexity. For instance, HE based CNN
inference is 5 orders of magnitude slower than unencrypted
inference on a CPU [1]. State-of-the-art work Cheetah [2]
demonstrates techniques that improve upon the existing works.
In this work, we first characterize Cheetah and identify its
key bottlenecks - memory accesses and NTT operation. We
propose a weight packing scheme to improve its reuse, lower-
ing the total memory accesses, at the cost of increased NTT
operations. We demonstrate that, for most layers in ResNet50,
this trade-off is justified — we observe 10x lower energy with
almost half inference latency over Cheetah baseline.

II. BACKGROUND
A. Homomorphic Encryption operations

Modern HE schemes, based on the hardness of Ring-
LWE problem, enables addition (PolyAdd) and multiplication
(PolyMult) over encrypted data. A single message (modulo-t)
is encoded as a n-degree polynomial and then encrypted to a
ciphertext - a pair of polynomials of same degree and modulo-
@ coefficients. Operations are carried over ciphertext, and the
result is obtained after its decryption. However, performing
operations over ciphertext increase its intrinsic error/noise.
To ensure correct decryption, ciphertexts have a certain noise
budget, a depth factor which bounds the number of operations,
typically multiplications. HE parameters (n,t, () determine
the security strength and the noise budget of the scheme. All
ciphertext computations in HE are performed modulo) and
PolyMult is modular multiplication.

B. Reducing Homomorphic Encryption’s complexity

Existing works typically employ the following techniques to
reduce HE’s complexity: 1) Residue Number System (RNS) is
used to decompose a single polynomial with wide coefficients
into a set of polynomials with narrower coefficients, called
residue polynomials, that can be evaluated in parallel. 2) Sec-
ondly, while PolyMult requires convolving their coefficients,

Shreyas Singh
shreyas.singh @utah.edu

Rajeev Balasubramonian
rajeev@cs.utah.edu

an expensive O(n?) operation, Number Theoretic Transform
(NTT) makes it faster. Degree-n polynomials are first trans-
formed from coefficient space to evaluation space using the
O(nlogn) NTT algorithm, followed by an coefficient-wise
multiplication (O(n)). Polynomials are stored in evaluation
space and only revert back for decryption, avoiding domain
conversion cost using expensive NTT. 3) Lastly, given the
ciphertext complexity over plaintext, most schemes pack
multiple data within a single ciphertext. Given n slots, n
elements are encoded in a polynomial. However, to add two
elements which reside at different slots, a Rotation operation
is performed over the ciphertext to align the coefficients.
This requires NTT to convert between the evaluation and
coefficient formats, which is an expensive operation. Also,
a Key Switching (KS) procedure is required upon ciphertext
rotation that multiplies the cipher with a Key Switching Hint
(KSH). KSHs are provided by the user for every possible
permutation of ciphers, and cause large data movement.

III. PROPOSAL

A. Performing CNN inference with Cheetah

Cheetah [2] is the state-of-the-art implementation of HE-
based CNN inference. It assumes a threat model where the
user and client are curious, but honest. Input features from
user are encrypted and sent to the cloud, which performs
convolution with its model weights (unencrypted). Since HE
cannot perform non-linear layers, like ReLLU, pooling, etc,
trivially, the cloud sends the output neuron of each convolution
layer to the user, who decrypts and performs the non-linear
layers and re-encrypts it for the cloud. Input and weight
polynomials are brought on-chip and multiplied to generate
partial sum. With a new weight, a new partial sum is generated.
In order to accumulate, the partial sums have to be aligned.
Therefore, after every PolyMult, partial sums have to be
rotated, an expensive operation consisting of NTTs and KS.
We use a similar inference model as Cheetah.

Cheetah packs input feature map (/F = (X, Y, C)) values
from a single channel in a single ciphertext polynomial. If
more slots are available (n > XY), they go across channels
as well (Cy). A single weight (W = (R, S, C, K)) value from
a single kernel and channel is taken and encoded as a weight
plaintext polynomial. To exploit parallelism, the weight value
is replicated across all slots in that polynomial, as long as
the channel matches the channel in corresponding IF' slots;
if not, pad with zeroes. Since a single value is packed in a
polynomial, they need to fetch a polynomial from a larger

IF L1 8-bit registers (128)
TN S Ty S
IF L2 Buffer (64kB) T R 240-
can store 512 Poly pairs W L1 8-bit registers (64) 220
<+
| KSH L1 8-bit registers (64) 200+ 2 =
W L2 Buffer (32kB) L 180 o
can store 512 Poly TWi‘ddlle Lyl Sfbi": rEFiSFer? (6|4) =160- h: F'|
{=

S 1401 & p
KSH L2 Buffer (64kB) 1204 ,_‘:
Stores all KSH for 1024 < 100- %] ~
permutations ‘ Psum L1 8-bit registers (128)‘ | | g 80- % %
w [e] [=]
S< - 601 “ o

e) 40

~ -4

-~
~<l L2 | PE ‘ PE ’VI.Z ‘... 204 L
. 0-: £ 52
® 4x4 PEs 5 = s =2
Q L=
| HBMInterface | & 5

(a) Architecture

(b) Energy (in J)

ResNet
35,

ResNet Metric
[| Metric b3 ~ m Key Switching
® IF L2 Cache IR =Rl NTT
| | KSH L2 Cache v ~ . m Others
® MAC Units 225 b PolyMult
Memory c < o
w Others = & P
PSUM Registers = 20+ < ~
9 N ~
€15 = >
= z =z
2., 8 O
E 10+
=
5_
—- —-_—
Y 0T, 20 <o
E=n] = =
= m = o = m ==
AT gh gk gl
2 £ 2 2
] [w} =} v}

(c) Performance (in s)

Fig. 1: (a) Architecture. (b,c) Energy and Performance comparison of Cheetah v/s EPIC, running ResNet50. First two bars are
2 example layers from ResNet50, while last bar illustrates results while running whole ResNet50 model.

memory for all RSCK iterations over IFs. Usually, the re-
use distance is too large to cache on-chip, and all weight
fetches become memory fetches. While the latency of these
fetches are hidden behind large computation cycles of NTT,
these fetches consume quite a lot of energy. Additionally, if
weight polynomial is padded with zeros, Cheetah’s PolyMult
results in many ineffective computations. In this work, we
propose a technique to address both these issues.

B. EPIC: Packing weights efficiently

Cheetah’s ineffective computations and memory footprint
arise due to an inefficient weight encoding. A single weight
value from RS K C weights is packed in 1 polynomial. Instead,
we propose EPIC - packing multiple values in the weight
polynomial. Given C; channels packed in the IF cipher, we
first pack RS values from those C; channels; then fill the
remaining slots with K; < K weight values. In short, we
pack RSCK; weight values in the weight polynomial. This
means that we can reuse the same polynomial, by rotating
RSK, times, reducing weight memory accesses by RSK;x
compared to Cheetah. However, weights must be rotated
along with psum, which incurs more NTT operations. We
demonstrate that in most cases, this is a worthwhile trade-off.

C. Methodology

We compare Cheetah and EPIC by running encrypted in-
ference on ResNet50 model. Similar to Cheetah, we present
results only for server-side convolution operations. Since most
CNNs perform a non-linear layer after every convolution
layer, the HE parameters can be reduced to serve a depth of
one cipher-cipher multiplication. We use a popular scheme,
BFYV, to extract parameters - (n = 1024,log Q = 19). Since
many models, and hence CNN accelerators, employ 8-bit INT
precision activations, we encode 8-bit plaintext per slot. We
decompose each ciphertext into 4 RNS polynomials with 8-
bit coefficients. We model a simple architecture (Figure la)
that consists of 16 PEs in a torus network, each with a IF, W,
and KSH L2 buffer, and connected with HBM2 memory. Each
PE is responsible for 64 coefficients - 64 W registers, 128 IF

registers (2x since ciphertexts are a pair of polynomials), 128
Modular Multiply-Add units, and 64 registers to store KSH
and Twiddle factors (used by NTT). A fast optimized modular
multiplier is taken from [3].

D. Results

We first characterize the component-wise energy consump-
tion of Cheetah in Figure 1b. We note that memory accesses
contribute to the majority of energy. This is because Cheetah
requires a new weight after performing a single PolyMult.
Since Cheetah packs a single value in a polynomial, it is
unable to capture the large reuse distance using a L2 cache.
Our dataflow reuses IFs by bringing RS weight values. Next,
a different channel is brought on the PEs to accumulate to the
same psum. Once we exhaust input channels, we iterate over
output channels. The reuse distance of IFs here is determined
by C/Cy, which is usually <512 in our experiments. We
capture this reuse with a L2 IF cache. EPIC reuses the weights
on-chip, reducing the memory accesses. Due to this, EPIC
consumes ~ 10x lower energy than Cheetah, as seen from
the last bar (represents running whole ResNet50).

From Figure 1c, we note that, overall, EPIC observes a
speedup of 2.2 over Cheetah. This is because Cheetah pads
weight polynomials with zeros for C; > 1, resulting in
ineffective computations in parts of psum polynomials. This
increases the number of NTT calls, increasing the inference
latency. However, when C; = 1, Cheetah outperforms EPIC,
as seen by layer conv224 224 7 7 3_64. This is because
EPIC’s packing requires weights to be rotated with psums,
hence doubling the NTT calls over Cheetah. However, this
scenario rarely happens since in most layers XY < n, and
despite the performance drop, EPIC still saves energy by
reducing memory accesses, as seen in Figure 1b.

IV. CONCLUSION

In this work, we characterize Cheetah and identify memory
as a major bottleneck. We then propose a weight packing
technique that results in speedup of 2.2 while saving 10x
energy, over Cheetah running ResNet50.

(1]

(2]

[3]

REFERENCES

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International conference on
machine learning, 2016.

B. Reagen, W.-S. Choi, Y. Ko, V. Lee, H.-H. Lee, G.-Y. Wei, and
D. Brooks, “Cheetah: Optimizing and Accelerating Homomorphic En-
cryption for Private Inference,” in 27th International Conference on High
Performance Computer Architecture (HPCA), 2021.

N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A Fast and Programmable Accelerator
for Fully Homomorphic Encryption,” in 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2021.

