
Low-Latency Convolutional Layer Computation
Under Homomorphic Encryption

Zhi Ming Chua, Christos-Savvas Bouganis, Peter Y. K. Cheung
Imperial College London

I. INTRODUCTION

Big data analytics have achieved significant breakthroughs
with increasingly complex machine learning algorithms, often
aided by computation outsourcing. However, processing data
in a responsible and secure manner remains a considerable
challenge. Homomorphic encryption (HE) has been hailed as
a holy grail in secure computation as it allows computations
to be carried out directly on encrypted data, hence preserving
data privacy. However, homomorphic operations (HOPs) are
several orders of magnitude more computationally expensive
than the plaintext operations, primarily due to the cipher-
texts being much larger than their corresponding plaintexts,
prohibiting HE application to settings where low-latency is
desirable. We show how batching, a capability of some HE
schemes, can be utilised to reduce the latency in the execu-
tion of Convolutional Neural Networks (CNNs), by enabling
concurrent computation within the convolutional layers.

II. BACKGROUND

Homomorphic encryption is an encryption method that
allows plaintext operations to be performed directly on their
ciphertexts, preserving data privacy. Among the latest gen-
eration of HE schemes is the CKKS [4] scheme. In this
scheme, a ciphertext is a pair of polynomials of degree N
with coefficients integers modulo Q. A Chinese Remainder
Theorem (CRT)-based encoder is used to transform a vector
of integers of length N/2 into a plaintext polynomial, which is
then encrypted. Similar to how the CRT enables the operations
on large integers to be equivalent to the same operations on
their remainders in the residue number system, when HOPs are
performed on a ciphertext, all N/2 encoded values undergo the
same transformations. This capability is called batching. The
CKKS scheme supports addition, multiplication and rotation.

III. PROBLEM STATEMENT

Although recent works have shown that it is possible to
compute entire CNNs on homomorphically encrypted data,
these CNNs remain considerably shallower than state-of-the-
art deep CNNs. This is because the computation costs of
HOPs increase more than linearly with the multiplicative
depth of the function evaluated, prohibiting the application of
those approaches to modern state-of-the-art CNNs with large
number of layers. The batching capability has traditionally
been employed to reduce average latency by processing data
across different batch instances in parallel, as shown in Cryp-
toNets [6]. More recently, some works [2], [5] have shown that
latency can be reduced significantly using batching, by packing

data that belong to the same batch instance within the same
ciphertext, hence reducing the total number of HOPs required.
We present a more refined search of the design space via the
Split Convolution, which we elaborate on in Section IV-A3.

A. Problem Setting
In our work, we focus on CNN-based classification of

encrypted images outsourced to a third-party server. As con-
volutional layers have the highest contribution on the compu-
tational load of the CNN, we choose to focus on accelerating
their homomorphic computation. It should be noted that the
user data and the model are both encrypted.

In the proposed setting, the server computes individual con-
volutional layers and transmits the intermediate results back to
the data owner for activation computation and re-encryption.
This model of computation has the following advantages: the
computation cost of each HOP does not increase with the
depth of the CNN, and no restriction is placed on the form
of the activation layers in being HE-compatible. As such, the
adopted computation model can be applied to state-of-the-art
CNN models. We assume the server to be semi-honest.

B. The Packing Problem for Convolutional Layers
In convolutional layers, the data evaluated has multiple

dimensions, e.g. width, height, channel and batch. The com-
putation in a convolutional layer can be decomposed into
b× ci × co single-channel convolutions, where b is the batch
size, and ci and co are the number of input and output
channels, respectively. Each single-channel convolution re-
quires f × wo × ho multiplications, where f is the kernel
size, and wo and ho are the width and height of the output
feature map, respectively. Given a scheme with polynomial
of degree N , there are N/2 slots per ciphertext available to
store data. As such, a homomorphic multiplications can be
performed on the N/2 slots in parallel. We define the packing
problem as follows: given a convolution-based workload, find
a grouping of the b × ci × co × f × wo × ho required
multiplications on a ciphertext that minimises the latency of
the convolution computation. Towards constructing the space
of possible groupings, we define a number of parameterised
configurations which are called packing configurations.

IV. METHODOLOGY

In this section, we demonstrate how convolution operations
can utilise the capability of batching, followed by how batched
processing of multi-channel convolutions can be decomposed
into single-channel convolutions. Finally, we present how we
systematically traverse the design space.

1



A. Width and Height Dimensions: Convolution
Matrix multiplication is a widely used technique to perform

2-D convolutions. The matrix can be vectorised in a column-
major or a row-major manner. The former produces partial
results that lie within the same vector, requiring expensive
rotation operations to accumulate. We therefore exclude this
in our work. We consider 3 approaches to pack the mul-
tiplication operations from the row-major vectorisation. For
simplicity, we demonstrate these approaches using a toy ex-
ample in 1-D, where a valid convolution with input feature
map m = [m1,m2,m3,m4,m5] of length ni = 5, a filter
k = [k1, k2, k3] of length f = 3 and stride s = 2 is computed.
Let r = [r1, r2] = m ∗ k be the result of the convolution.
Assume the number of slots ns = 8.

1) Direct Convolution: In direct convolution, the
input feature map values are multiplied by each filter
value in parallel. The input feature map is rotated before the
multiplication is performed such that the partial results align at
the same slot index. For the toy example, this is implemented
as [m1,m2,m3,m4,m5, 0, 0, 0] ⊙ [k1, 0, k1, 0, 0, 0, 0, 0] +
[m2,m3,m4,m5, 0, 0, 0,m1] ⊙ [k2, 0, k2, 0, 0, 0, 0, 0] +
[m3,m4,m5, 0, 0, 0,m1,m2] ⊙ [k3, 0, k3, 0, 0, 0, 0, 0] =
[r1, 0, r2, 0, 0, 0, 0, 0].

2) Intraleaved Convolution: With direct convolution,
the element-wise multiplications performed at indices 2
and 4 do not yield partial results. To decrease the
homomorphic multiplications required, we can densify
the kernel ciphertext. We call this the intraleaved con-
volution, which for the toy example is implemented
as [m1,m2,m3,m4,m5, 0, 0, 0] ⊙ [k1, k2, k1, k2, 0, 0, 0, 0] +
[m3,m4,m5, 0, 0, 0,m1,m2]⊙ [k3, 0, k3, 0, 0, 0, 0, 0]. The re-
sult is then summed with a rotated version of itself such that
the partial results in indices 1 and 2, 3 and 4 are accumulated
to produce r1 and r2, respectively. This procedure is called
rotate-and-sum. Masking is used to remove junk results in all
slots, except for indices 1 and 3. The number of homomorphic
multiplications is reduced compared to Direct Convolution but
requires more computation to combine the partial results.

3) Split Convolution: This approach is an extension of
the decomposed convolution presented by Juvekar et al. in
[7], where they demonstrated how strided convolutions can be
decomposed into s convolutions of stride (1, 1). The result is
obtained by summing the partial results of the s convolutions.
For our toy example, the convolution would be decomposed
as m ∗ k = [m1,m3,m5] ∗ [k1, k3] + [m2,m4, 0] ∗ [k2, 0] and
each term is computed via direct convolution. In this approach,
the input feature map and filter values are decomposed with
data stride d equal to the convolution stride s. We extend
this further by increasing the data stride d in steps of s. The
maximum data stride possible is ni. When d = ni, the feature
map is fully split across ni ciphertexts, i.e. no two elements of
the feature map lie in the same ciphertext. With the exception
of d = ni, data strides that are not multiples of s yield partial
results in ciphertext layouts that require complicated (hence,
computationally expensive) rotations and masking procedures
to accumulate, hence they are excluded from the design space.

B. Channel and Batch Dimensions
A convolution with ci input channels and co output channels

requires the computation of ci × co single-channel convo-
lutions. Depending on how the ci × co convolutions are
grouped for parallelisation, different rotate-and-sum and mask-
ing procedures are required to accumulate the results for the
corresponding output channels. Similarly, batches of data can
be grouped for parallel processing but no further computation
is required to accumulate results over different batch instances.

C. Traversing the Design Space
We traverse the packing configuration design space from the

bottom up, working in the order of width, height, channel and
batch. At each dimension, we comb through possible packing
configurations, i.e. the different approaches for convolution
(including all possible data strides d for split convolution) in
the height and width dimensions, and the different groupings in
the channel and batch dimensions. To prune the design space,
we do not consider further groupings if the number of slots
required to parallelise another set of HOPs exceeds ns.

V. EXPERIMENTS AND EVALUATION

To illustrate the impact of different packing configurations,
we perform a homomorphic evaluation of a convolutional layer
using a small example with a batch size of 1. The input feature
map is 5× 5 with 3 channels. The filter is 3× 3 with a stride
of (2, 2). The number of output channels is 4.

All experiments were conducted using a Vagrant box with
16 cores of an Intel Xeon CPU E5-2630 v4 @ 2.20GHz and
64GB memory. We used Microsoft SEAL 3.7.1 [8], which
implements the residue number system (RNS) variant [3]
of the CKKS scheme. We let N = 8192 and ⌈logQ⌉ =
200 or 160, depending on the multiplicative depth determined
by the packing configuration. The security level is at least
128-bit, according to the standards set out in [1].

We use microbenchmarks in our cost model to estimate
the latency of the homomorphic evaluation, including en-
coding+encryption and decryption+decoding. The cost model
achieved a mean relative error of 4.87% when compared to
the average actual latency over 50 runs. The baseline does not
utilise batching and has an average latency of 4.2185 seconds.
Our search identified a packing configuration with an average
latency of 0.0982 seconds, which translates to a 43× speedup.
Detailed results are presented in Table I.

TABLE I
LATENCY FOR DIFFERENT PACKING CONFIGURATIONS (SECONDS)

Config. Enc.+Encrypt Evaluation Decrypt+Dec. Total

Baseline 1.2327 2.9696 0.0161 4.2185
Ours (model) 0.0337 0.0590 0.0004 0.0937
Ours (actual) 0.0379 0.0596 0.0007 0.0982

VI. CONCLUSION

This work introduced a methodology for improving the
latency of the computations of convolutional layers in a CNN
under homomorphic encryption by exploring possible packing
configuration in the ciphertext, opening the space for low-
latency CNN computation under HE.

2



REFERENCES

[1] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Miccian-
cio, D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Ho-
momorphic encryption security standard,” HomomorphicEncryption.org,
Toronto, Canada, Tech. Rep., November 2018.

[2] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency
privacy preserving inference,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.
PMLR, 09–15 Jun 2019, pp. 812–821. [Online]. Available: http:
//proceedings.mlr.press/v97/brutzkus19a.html

[3] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography – SAC 2018, C. Cid and M. J. Jacobson Jr., Eds. Cham:
Springer International Publishing, 2019, pp. 347–368.

[4] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” Advances in Cryptology –
ASIACRYPT 2017, pp. 409–437, 2017.

[5] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and
M. Musuvathi, “Eva: An encrypted vector arithmetic language and
compiler for efficient homomorphic computation,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 546–561. [Online]. Available:
https://doi.org/10.1145/3385412.3386023

[6] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proceedings of the 33rd
International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, pp. 201–210.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3045390.3045413

[7] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” in
27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, 2018, pp. 1651–1669. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar

[8] “Microsoft SEAL (release 3.7),” https://github.com/Microsoft/SEAL, Sep.
2021, microsoft Research, Redmond, WA.

3


