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Abstract—Automatic Speech Recognition (ASR) is quickly
becoming a mainstream technology, mainly driven by the
outstanding accuracy achieved by modern systems based on
machine learning. However, these systems often require billions
of arithmetic operations to decode a second of audio and
relying on cloud services for ASR is usually inconvenient.
Even though deployment of ASR systems directly on the edge
is highly desirable, the requirements for high performance
and low energy consumption, combined with the fast pace of
evolution and heterogeneity of existing ASR systems, result in
challenges for effective deployment of ASR on edge devices.
In this work, we propose a programmable accelerator to
efficiently support a variety of ASR implementations. We
estimate the performance of our system by implementing a
recently proposed streaming ASR system and show that it
can perform real-time streaming decoding with a tight power
budget and low area footprint while offering great flexibility
to implement a variety of different models.
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nition

I. INTRODUCTION

Voiced-based applications are quickly becoming main-
stream. This widespread adoption is fueled by the out-
standing improvement experienced by the Automatic Speech
Recognition (ASR) systems that power them [1]-[3], [8].

Despite the impressive progress in automatic speech
recognition technology, deployment of ASR systems on edge
devices remains challenging and thus ASR systems are com-
monly deployed on servers. This approach is problematic
due to high decoding latency and high energy consump-
tion from the network subsystem of the edge device [5].
However, the biggest concerns come from the security and
privacy issues related to sending personal data to external
servers.

In order to move ASR to the edge, edge devices must pro-
vide enough computing power to perform expensive DNN
inferences and graph searches. The compute power require-
ments can be fulfilled by including hardware accelerators in
existing SoCs [6]. However, generic accelerators may not be
enough to provide consistent performance and very specific
accelerators may quickly become obsolete given the number
of alternative implementations available for ASR and the fast
pace of innovation in the ASR field.
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Figure 1. Diagram of the accelerator

In this work, we propose a programmable accelerator for
ASR. A programmable accelerator can handle a large variety
of different ASR implementations while providing enough
compute power in an efficient manner through some degree
of specialization. We explore a design that enables enough
computing performance in a low-power setup for real-time
streaming decoding. Furthermore, we provide a program-
ming model that abstracts away some of the complexities of
the system for ease of programming and flexibility.

II. ACCELERATOR

The accelerator, depicted in figure 1, relies on a pool of
general-purpose cores (PE) to support parallel execution.
Each core has a data cache and an instruction cache and
implements a RISC-V ISA with extensions for vector oper-
ations and special functions.

A. Command Decoder

The accelerator is accessed through a set of commands.
These include commands to set up the beam size of the
hypothesis expansion, configure the kernels that implement
the ASR system, start a decoding step and finish the current
decoding process. The command decoder stores the required
parameters in the ConfMemory, which is later accessed by
the ASR controller during run time.

B. ASR Controller

Figure 2 shows the overall process of decoding an utter-
ance with our accelerator. This process is controlled by the



ASR Controller. In streaming decoding, the signal is decoded
in decoding steps. Each step decodes a few milliseconds of
the audio signal. An external process captures an audio seg-
ment and commands the accelerator to start a decoding step.
Each decoding step is divided into two stages: (1) the first
stage is the acoustic scoring, which consists of producing
acoustic score vectors by processing the raw audio segment;
(2) after the acoustic scores are generated, the hypothesis
expansion stage starts. That stage generates transcriptions
hypotheses from the acoustic scores and additional models,
such as lexicon and language models.

During acoustic scoring, the ASR controller launches a
sequence of parallel kernels which collectively implement
the feature extraction and acoustic model processes in the
ASR system. These kernels access data from the shared
memory, which can be used to store and retrieve intermediate
results, and the model memory, which is used to pre-load
model parameters, such as DNN weights. The kernels are
launched sequentially, meaning that the next kernel will not
start executing until all the threads from the current kernel
have finished.

Every kernel consists of a kernel program and a setup
program. The setup program reserves and frees space in the
shared memory, configures the model memory DMA to pre-
fetch model data and check whether there are enough inputs
for the kernel program to execute or not. Figure 3 shows how
the different threads are scheduled in the PE pool during
acoustic scoring. Each square represents a PE executing a
setup thread (yellow) or a kernel thread (blue). (1) First,
the setup thread of kernel O is dispatched. It configures
the DMA to load the model data for kernel O in model
memory and waits for it to finish. (2) The execution of the
following kernels (as; in the figure) starts by dispatching the
setup thread for the next kernel (as;1) alongside the kernel
threads of as;. (3) The ASR controller keeps dispatching
as; threads until the kernel is completely executed. If a
setup thread determines that the corresponding thread cannot
be launched (4), it will notify the controller. Additionally,
it can pre-fetch the model data for kernel O to skip step
1 during the next decoding step. After the current kernel
finishes (5), the controller will interrupt the decoding step
and wait for the next decoding command, which will start a
new decoding step from (1) or (2), depending on whether the
model data for kernel 0 is pre-loaded or not. (6) The setup
for the hypothesis expansion phase is launched alongside the
threads for the last acoustic scoring kernel. Finally, when all
the threads for the last acoustic scoring kernel finish (7), the
accelerator ends the acoustic scoring phase.

After the acoustic scoring phase, the ASR controller enters
the hypothesis expansion phase. For this phase, the program-
mer provides only one kernel. The controller dispatches as
many threads of this kernel as the number of hypotheses that
resulted from the previous hypothesis expansion phase. Each
thread reads a hypothesis and appends to it every possible
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Figure 3. Scheduling of kernel and setup threads in the PE pool

acoustic token to generate new hypotheses. During this
stage, the model memory acts as a data cache to leverage the
existing locality in the access to the graph structures [7]. The
setup program of the hypothesis expansion kernel determines
how many hypothesis expansions must be performed. This
is useful in the case that the acoustic scoring phase produced
more than one scoring vector.

C. Hypothesis Controller

The hypothesis expansion threads send the generated
hypotheses to the hypothesis controller, which sorts them
according to their score and prunes them according to
the beam width and the hardware maximum number of
threads. This controller stores the received hypotheses in
the Hypothesis memory. The non-pruned hypotheses are
kept there in-between decoding steps. Hypothesis expansion
threads access the hypothesis memory through the hypoth-
esis controller.

IIT. RESULTS

We configure the architecture with 8 cores, each contain-
ing 4K B of i-cache and 24K B of d-cache. The vector
units are of width 4. Outside of the cores, we include
1M B of prefetch buffer/d-cache, 512K B of shared memory,
64K B of i-cache and 24K B of hypothesis memory. This
configuration results in around 12mm? at 22nm (64% of
which is dedicated for the core pool) and provides a peak



performance of 32GMAC/s at 500MHz. We estimate the
peak power at about 1.8W

To estimate performance, we implement a recent end-
to-end CTC-based ASR system [4]. It consists of a TDS
network that extracts acoustic scores from MFCC features.
The hypotheses are expanded by traversing a lexicon tree
and a graph-based language model.

The acoustic scoring phase consists of 1 kernel to compute
MFCC features and 79 kernels (18 convolutions, 29 fully-
connected layers and 32 LayerNorms) to implement the TDS
network, each preceded by its corresponding setup thread.
We only implement each type once and reuse the kernel
code as explained in section II-B.

The ASR system generates 100 MFCC frames per second
of audio and the TDS network applies a sub-sampling factor
of 8 to the input. This means that decoding a second of
audio requires 13 decoding steps. We estimate that it takes
about 520ms to decode a second of audio in the proposed
accelerator, which exceeds real-time performance. We also
estimate that the average power dissipation is slightly over
1W.
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