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I. INTRODUCTION

Hyperdimensional (HD) computing is an emerging paradigm
for machine learning based on biologically plausible models of
memory. HD computing represents data as random points with
i.i.d. components in a high-dimensional, low-precision, space.
These points are then used as input to learning algorithms.
The i.i.d. and low-precision nature of HD representations
accord naturally with highly parallel hardware like FPGAs
and PIM architectures and HD computing has recently gained
significant popularity in the hardware community [1]–[3].

Existing work on HD computing has focused primarily
on learning linear functions over the encodings. However,
much data of practical interest is nonlinear, meaning that
linear methods may fail to capture important structure in
the data. Our goal is to assess the utility of using nonlin-
ear learning algorithms on HD representations of data. A
complication arises because nonlinear models are generally
more complex computationally than simple linear methods
which are traditionally used with HD computing. In this
work, we show how nonlinear learning on HD representations
can be formulated as a sparse convex optimization problem
using the Boolean Fourier transform. We additionally present
results from a preliminary empirical study motivated by this
formulation designed to assess the possible practical benefits
of this approach.

II. BACKGROUND AND RELATED WORK

In [2], the authors use an HD encoded vector as input to
a simple multilayer-perceptron with a single hidden layer.
Neural network based methods may be unappealing as they
introduce a multitude of new tunable hyperparameters and
require non-convex optimization methods. By contrast, our
approach introduces only a single hyperparameter and can
be solved using efficient convex methods. Work in [4] pre-
sented simple heuristics for learning sparse classifiers on HD
representations but did not consider the theoretically optimal
L1 based methods considered here. Most closely related to
our work is [5] who examines connections between HD
computing and compressed sensing. Like ours, their approach
can be formulated as an L1-penalized regression problem on a
random design matrix. However, our formalism is based on the
Boolean Fourier transform which has a rich theory outside of
compressed sensing and explicitly addresses learning arbitrary
Boolean functions over the HD representations. To the best of
our knowledge, we are the first to explore the connections
between HD computing and Boolean spectral learning.

A. Boolean Fourier Transform and Spectral Learning

The following reviews the bare essentials of the Boolean
Fourier transform (hereafter referred to simply as the Fourier
transform). Let g(z) be a function g : {±1}d → R and
let S be a subset of [d] = 1, ..., d. The Fourier transform
of g can be defined to be its unique representation as [6]:
g(z) =

∑
S⊆[d] ĝ(S)χS(z), where χS(z) =

∏
j∈S zj is

the parity function for S. We can rewrite the above more
compactly in matrix form as: g = Ψĝ, where Ψ is the 2d×2d

matrix formed by stacking up all parity functions. The Fourier
coefficients–ĝ(S)– can be computed as:

ĝ(S) = E
z∼Unif({±1}d)

[g(z)χS(z)] =
1

2d

2d∑
i=1

g(zi)χS(zi) (1)

The Fourier transform is important in learning theory because
its invertibility implies learning the spectrum ĝ and the func-
tion g are equivalent. Per Equation 1, given 2d unique samples,
we may simply compute ĝ exactly, but this is not feasible in
general. For many functions of interest the spectrum is sparse
in the sense that only some k � 2d coefficients are nonzero
so that that one may accurately estimate the spectrum from
far fewer samples (see: [6] Thm. 3.29).

III. FORMAL MODEL

We assume our data is generated by some unknown and
possibly nonlinear function f : X → {±1}. Our goal is
to learn f . We assume we have access to a set of samples
S = {(xi, f(xi))}Ni=1 where xi ∈ X ⊂ Rn and yi ∈ {±1}.
We first map each sample x to a binary HD representation
under an encoding function φ : Rn → {±1}d. Then, we
posit the existence of some function g : {±1}d → R, such
that f(x) = sign(g(φ(x))) and seek to learn g by estimating
its Fourier spectrum. Our approach is motivated by [7] who
formulate learning as a similar convex problem, but assume
the binary representation is already given, unlike our setting
where the input data is Euclidean.

More formally, we assume f(x) = sign(Ψ̃ĝ) where g ∈
R2d , Ψ̃ is an N × 2b matrix such that Ψ̃ij = χSj

(xi). Thus,
this problem amounts to the recovery of a sparse vector of
coefficients using an over-complete measurement matrix (Ψ)
which can be formulated as the following convex problem:

ĝ? = argmax
ĝ∈R2d

yTΨĝ − λ‖ĝ‖1 (2)

Solving this problem exactly is still difficult since Ψ̃ contains
2d columns (vast in the context of HD). To obtain an inkling



of the practical benefits from this formulation of HD learning,
we here exploit a well known connection between the Boolean
Fourier transform and decision tree learning for which there
are numerous well known algorithms. Since our interest is
simply in obtaining a low-complexity representation of g–
we do not care about the spectrum itself–this enables us to
approximate the difficult problem above by simply learning a
decision tree. The Fourier transform has well known relation-
ship with decision trees, where the spectral and tree complexity
are related by the following proposition from [6].
Prop Let g : {±1}d → R be represented by an `-leaf,
depth-k decision tree, and define the spectral sparsity of g
by sparsity(g) , |{S ∈ [d] | ĝ(S) 6= 0}|. Then, the spectral
sparsity of g is bound by

sparsity(g) ≤ `2k ≤ 4k (3)

To obtain the binary representation of our data, we use the
method of random half-spaces, which partitions X using a
grid formed by d random hyperplanes and encodes each point
using a binary string uniquely identifying each grid cell [8].
More formally: φ(x) = sign(Φx + b), where Φ ∈ Rd×n is
a matrix whose rows are sampled uniformly at random from
the n-dimensional unit sphere and b is an intercept chosen
uniformly at random from the support of X .

IV. EMPIRICAL RESULTS

We evaluate sparse recovery by models fit on low-dimensional
data and HD encoded representations. We compare the ac-
curacy and model complexity of decision trees with an L1-
regularized linear SVM as a baseline, similar to an approach
considered in [5]. The L1-regularized SVM is a computa-
tionally simpler model, but cannot learn as rich a space of
functions. SVMs and decision trees are fit several times to
select regularization constants and tree structures—number of
leaves and depth—that yield sparse models whose accuracy
remains within 5% of the highest observed accuracy. The
sparsity captured by models is measured in terms of support
size, defined as the number of nonzero coefficients of an SVM,
or as `2k for a depth-k, `-leaf decision tree, per equation (3).
To study sparse and approximated spectral learning with HD,
we consider five datasets in UCI’s Machine Learning Repos-
itory: UCI HAR, ISOLET, Buzz/Tom’s Hardware (Buzz/TH),
Buzz/Twitter (Buzz/TW), and Adult.

As in [5], we find HD representations enjoy significant
sparsity. On our data, HD SVMs preserve sparsity at the
same level as low-dimensional models and have a constant
support size independent of encoding dimension. Figure 1
shows decision trees are capable of capturing more sparsity in
HD representations than in the low-dimensional data (relative
support size is < 1) despite the significantly larger HD
dimension. Additionally, the support size of HD decision trees
is constant w.r.t. the encoding dimension. Accounting for both
accuracy and sparsity, sparse recovery with the HD decision
trees requires a minimum dimension of ≈ 2-4, 000 on “simple”
(e.g. linear) datasets but of only ≈ 1-2, 000 otherwise. In
absolute terms, the support size of decision trees is larger than

Fig. 1. Sparsity (left) and accuracy (right) of HD decision trees (DTs) (top)
and HD SVMs (bottom), where the sparsity of decision trees is shown as HD
support size relative to low-dimensional support size; and where the sparsity
of SVMs is shown as normalized HD support size (HD support size scaled
by a factor of 1/(total number of coefficients)).

SVMs; however, we emphasize that this model is able to learn
a broader class of functions than the SVM.

Although HD decision trees exploit more sparsity than their
low-dimensional counterparts, they may suffer from a greater
propensity to overfit, particularly when data is “simple” and
linearly learnable. This is evident in Figure 1 with ISOLET,
where an SVM attains high test-time accuracy on the HD
encoded data while the decision tree yields a significantly
lower test-time accuracy. However, for data poorly represented
by low-dimensional, linear models, such as Adult, our decision
tree approach offers modest improvements in accuracy, e.g.
by δ ∈ [1%, 4%], over the baseline HD linear SVM by
approximating nonlinear “spectral learning.”

Approximating spectral learning with decision trees is
promising in suggesting that HD representations are sparse
in the Fourier domain and that HD may be able to exploit
sparse spectral learning techniques in more efficient nonlinear
learning. While L1-regularized linear SVMs recover equal
sparsity in low-dimensional and HD data, spectral learning
techniques may enhance sparsity in the HD Fourier domain.
This sparsity is recoverable with encoding dimensions between
1-4000, allowing spare HD learning without the extremely
large dimensions (e.g. 10, 000) common in HD literature.

We note that the literature has proposed several efficient
algorithms for computing the expensive product Ψĝ when ĝ
is sparse [9], [10]. In follow up work, we plan to compare
our heuristic approach based on decision tree learning to
the formal problem posed above and explore solving the
sparse recovery problem exactly in HD representations which
may alleviate the issues surrounding overfitting with decision
trees. We are additionally interested in studying different
embedding methods, especially in their ability to preserve or
induce sparsity in HD representations and in the relationship
between the geometry of the original data and the level of
sparsity achievable with different embedding methods. We
would be interested to study embedding methods in the context
of approximate and exact solutions of the sparse recovery
problem.
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