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Abstract—Object detection plays an important role in self-
driving cars for security development. However, mobile systems
on self-driving cars with limited computation resources lead to
difficulties for object detection. To facilitate this, we propose
a compiler-aware neural pruning search framework to achieve
high-speed inference on autonomous vehicles for 2D and 3D ob-
ject detection. The framework automatically searches the pruning
scheme and rate for each layer to find a best-suited pruning
for optimizing detection accuracy and speed performance under
compiler optimization. Our experiments demonstrate that for
the first time, the proposed method achieves (close-to) real-time,
55ms and 99ms inference times for YOLOv4 based 2D object
detection and PointPillars based 3D detection, respectively, on
an off-the-shelf mobile phone with minor (or no) accuracy loss.

I. INTRODUCTION

As the rapid development of the autonomous vehicles, ob-
ject detection including 2D and 3D detection is one of the most
important prerequisites to autonomous navigation. It is essen-
tial to implement real-time object detection on autonomous
vehicles due to security considerations. However, as 2D and
3D detection are implemented with deep neural networks
(DNNs) such as YOLO [2] and PointPillars [9], respectively,
with tremendous memory and computation requirements, it is
challenging to achieve real-time on autonomous vehicles with
limited memory and computation resources.

To achieve real-time object detection on edge devices with
limited resources, we propose neural pruning search with
compiler optimization to implement real-time 2D detection
with YOLO [2] and 3D object detection with PointPillars [9]
on mobile devices. We summarize our contribution as follows,

e« We propose to perform a novel compiler-aware neu-
ral pruning search with Bayesian optimization (BO),
automatically determining the pruning scheme and rate
(including bypass) for each individual layer. The objective
is to maximize accuracy satisfying an inference latency
constraint on the target mobile device.

e We can achieve (close-to) real-time, 55ms and 99ms
inference times for YOLOv4 based 2D detection and
PointPillars based 3D detection, respectively, on an off-
the-shelf mobile phone with minor (or no) accuracy loss.
Our method on 2D detection notably outperforms other
acceleration frameworks such as TVM [3] and MNN [1],
while we are the first to support 3D detection on mobile.

II. AUTOMATIC NEURAL PRUNING SEARCH

The framework consists of two basic components: a con-
troller and an evaluator. The controller first generates various
pruning proposals from the search space. Then the evaluator
evaluates their detection accuracy and speed performance.
Based on the performance, the evaluator provides guidance

for controller about what a satisfying pruning proposal looks
like. Next the controller generates new pruning proposals with
the guidance. After iterations, the controller outputs the best
pruning proposal with desirable detection performance while
satisfying the real-time requirement.

A. Controller

The controller generates pruning proposals from the search
space. Each pruning proposal consists of the pruning scheme
and rate for each layer of the model, as shown in Tab. .

Per-layer pruning schemes: The controller can choose
from filter (channel) pruning [14], pattern-based pruning [12]
and block-based pruning [5] for each layer.

Per-layer pruning rate: We can choose from the list
{1x,2x%,2.5%,3%x,5%,7x,10x,skip}, where 1x means the
layer is not pruned, and “skip” means bypassing this layer.

1) Pruning Proposal Updating: The controller generates
new proposals following the replacement probability from the
evaluator. It determines whether to replace each node in the
currently best proposal according to the replacement proba-
bility. Next if replaced, the controller chooses randomly from
two nodes with the lowest probabilities as its replacement.

B. Evaluator

The evaluator needs to evaluate pruning proposal perfor-
mance. We define the performance measurement (reward) as:

r=V —a-max(0,t —T), 1)

where V' is the validation mean average precision (mAP) of the
model, ¢ is the model inference speed or latency, which is actu-
ally measured on a mobile device with compiler optimizations.
T is the threshold for the latency requirement. Generally, r is
high when the model satisfies real-time requirement (¢t < 7T')
with high mAP. Otherwise r is small, especially when the
real-time latency requirement is violated.

1) Evaluation with BO: As evaluating each proposal needs
to prune and retrain the model, incurring large time cost, we
use BO [4] to accelerate evaluation. As shown in Algorithm 1,
given a proposal pool from the controller, we first adopt BO to
select a part of proposals with potentially better performance
and evaluate their accurate detection and speed performance,
while the rest potentially weak proposals are not evaluated.
Thus, we reduce the number of actual evaluated proposals.

To deal with the non-continuous and graph-like pruning
proposals, we build a Gaussian process (GP) for BO with
a Weisfeiler-Lehman (WL) graph kernel [13]. We select the
proposals according to their Expected Improvement values.

TABLE I
SEARCH SPACE FOR EACH DNN LAYER

Pruning scheme | {Filter [14], Pattern-based [12], Block-based [5]}
{ 1x, 2%, 2.5%, 3%, 5%, 7%, 10x, skip }

Pruning rate |




Algorithm 1 Evaluation with BO

Input: Observation data D, BO batch size B, BO acquisition
function o(-)
Output: The best pruning proposal g
for steps do
Generate a gool of candidate pruning proposals Gc;
Select {¢°};21 = argmaxyeg,. a(g|D); .
Evaluate the proposal and obtain reward {r*}2, of {3"}2;
Obtain the gradients guidance information;
D DU ({5} 2, {r'}2);
Update GP of BO with D;
end for

Our

A 55 results
é 50 / Comparison with

~ other frameworks

X

X SSD
CenterNet-DLA
¢ YOLOV3-tiny
YOLOv4-tiny
W TFLite (YOLOv4)
W TVM (YOLOV4)
W MNN (YOLOv4)
M Ours(YOLOv4)
H*Ours (sparse)

<30 -

[} 100 200 300 400 500 600
Latency (ms)

Fig. 1. mAP vs. latency for various object detection approaches.

After selecting B pruning proposals from the pool, we
evaluate their performance using magnitude based framework
[7] following their pruning proposals for each layer.

2) Gradients Guidance: To guide the proposal updating,
we employ the derivatives of the GP predictive mean with
reference to the number of nodes in the graph. Basically,
positive gradients show that the node is beneficial to improve
the reward, while negative gradients mean that the node
decreases the performance and it should be replaced. To make
the gradients more illustrative, we transform the gradients
into a probability distribution (replacement probability) using
a sigmoid transformation on the negative of the gradients
and then normalize them. Thus, negative gradients lead to
high replacement probabilities. To summarize, the evaluator
provides the gradient guidance including the best evaluated
pruning proposal and its corresponding replacement probabil-
ity obtained from its gradients.

III. EXPERIMENTAL RESULTS

For 2D object detection, we use a YOLOv4 [2] model as
starting point and test on COCO dataset [10]. For 3D detection,
we employ the PointPillars as starting point [9] and test on
KITTI dataset [6]. All the acceleration results are tested on
the mobile GPU of a Samsung Galaxy S20 smartphone.

For 2D detection, as shown in Fig. 1, on mobile GPU,
our method achieves 5.18x inference acceleration (285.7ms
vs. 55.2ms) compared with the original model. Compared
with other pruning schemes, under the same pruning rate, our
method is a bit slower than filter pruning on mobile GPU
but achieves much higher accuracy (49.3 vs. 25.2 in mAP).
With slightly lower accuracy, our method is 1.79x faster than
unstructured pruning. We achieve faster speed compared with
other acceleration frameworks such as MNN [1].

For 3D detection with point clouds, we start from Point-
Pillars and test with different different grid sizes (0.16m and
0.24m). The real-time requirements are set to 200ms for 0.16m
gird size and 100ms for 0.24m. As shown in Tab. II and Fig.
2, we can observe that, for the same grid size, our method can
significantly reduce the parameter count and computation, thus
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Fig. 2. mAP vs. latency for various object detection approaches.
TABLE II
COMPARISON OF VARIOUS PRUNING METHODS FOR POINTPILLARS
Methods Para. | Comp. # | Speed | Car 3D detection
(grid size) # (MACs) (ms) | Easy [ Moderate | Hard
PointPillars (0.16) | 5.8M 60G 542 84.99 74.11 69.53
Ours (0.16) 1.IM 10.7G 189 85.50 76.58 70.23
PointPillars (0.24) | 5.8M 28G 257 84.05 74.99 68.30
Filter [8] (0.24) 0.8M 4.0G 81 81.54 68.10 65.90
Pattern [11] (0.24) | 0.8M 3.9G 111 80.97 73.77 68.05
Ours (0.24) 0.8M 3.9G 99 85.08 75.19 68.10

satisfying the real-time requirement, while achieving state-
of-the-art detection performance. For a grid size of 0.24m,
under the same overall pruning ratio (86%), the proposed
method can achieve the best detection performance compared
with other methods with the same pruning scheme for each
layer, demonstrating the advantages of using flexible pruning
scheme for each layer. Besides, with compiler optimization,
filter pruning is the fastest but suffers from obvious detection
performance degradation. The proposed method can process
one LiDAR image within 99ms with the highest precision,
achieving (close-to) real-time inference on mobile.
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